正态分布分析结果解读(正态分布)
一、什么是正态分布
正态分布也被称为高斯分布或钟形曲线(因为它看起来像一个钟),这是统计学中最重要的概率分布,就像我们在大自然中经常看到的那样,它有点神奇。例如,身高、体重、血压、测量误差、智商得分等都服从正态分布。
根据中心极限定理,如果一个事物受到多种因素的影响,不管每个因素本身是什么分布,它们加总后,结果的平均值就是正态分布。
二、标准正态分布函数是什么
标准正态分布函数公式如下图:
标准正态分布函数的性质:
1、密度函数关于平均值对称。
2、函数曲线下68.268949%的面积在平均数左右的一个标准差范围内。
3、函数曲线的反曲点为离平均数一个标准差距离的位置。
4、平均值与它的众数以及中位数同一数值。5、95.449974%的面积在平均数左右两个标准差的范围内。
标准正态分布是以0为均数,以1为标准差的正态分布,记为N(0,1)。标准正态分布在数学、物理及工程等领域都非常重要,在统计学的许多方面也有着重大的影响力。
正态分布也称为高斯分布。客观世界中很多变量都服从或近似服从正态分布,且正态分布具有很好的数学性质,所以正态分布也是人们研究最多的分布之一。
正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。若随机变量X服从一个数学期望为μ、方差为σ2的正态分布,记为N(μ,σ2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ=0,σ=1时的正态分布是标准正态分布。
三、正态分布的特点是什么
正态分布的特点:
1、正态曲线在横轴上方,均数最高。
2、以均数为中心,左右对称。
3、两个参数,均数与标准差,标准正态分布分别为0和1。
4、1±1.96σ,标准正态分布在±1处各有一个拐点。
5、面积有一定规律性。
正态分布由两个参数μ和σ决定。即均数μ(位置参数),描述正态分布的平均水平,决定着正态曲线在x轴上的位置;标准差σ(形状参数),描述正态分布的变异程度,决定着正态曲线的分布形状。
正态曲线下的面积分布有一定的规律:
①曲线下的面积即为概率。
②曲线下的总面积为1或100%。
③所有正态曲线,在μ左右的任意相同标准差倍数的范围内面积相同,例如区间μ±σ范围内的面积约为68.27%,区间μ±1.96σ范围内的面积约为95%,区间μ±2.58σ范围内的面积约为99%。
四、正态分布通俗易懂的意思
正态分布的通俗概念:如果把数值变量资料编制频数表后绘制频数分布图(又称直方图,它用矩形面积表示数值变量资料的频数分布,每条直条的宽表示组距,直条的面积表示频数(或频率)大小,直条与直条之间不留空隙。),
若频数分布呈现中间为最多,左右两侧基本对称,越靠近中间频数越多,离中间越远,频数越少,形成一个中间频数多,两侧频数逐渐减少且基本对称的分布,那一般认为该数值变量服从或近似服从数学上的正态分布。
扩展资料:
定理
由于一般的正态总体其图像不一定关于y轴对称,对于任一正态总体,其取值小于x的概率。只要会用它求正态总体在某个特定区间的概率即可。
为了便于描述和应用,常将正态变量作数据转换。将一般正态分布转化成标准正态分布。若
服从标准正态分布,通过查标准正态分布表就可以直接计算出原正态分布的概率值。故该变换被称为标准化变换。(标准正态分布表:标准正态分布表中列出了标准正态曲线下从-∞到X(当前值)范围内的面积比例。)
参考资料:百度百科-正态分布